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A predictorcorrector multiple iteration method is formulated to treat three-dimen- 
sional viscous flow problems. Specific application is made to the viscous interaction 
near a hypersonic leading edge. The effects of iteration on accuracy, stability and 
consistency of the finite-difference solutions is evaluated for both leading-edge cal- 
culations and a model Burgers’ equation. For a right-angle comer geometry comparisons 
are made with explicit finite-difference solutions and some recent experimental data. 

I. INTRODUCTION 

In a series of recent papers [l-7] it has been shown that at moderate angles of 
attack, the continuum flow over a slender body having a sharp leading edge can be 
described with a boundary-layer like system of equations. This model represents a 
uniformly valid approximation to the Navier-Stokes equations and applies 
throughout the inner viscous and shock layers, as well as the structure of the outer 
shock wave, Fig. 1. This unified approach to viscous-inviscid interactions has been 
developed to examine the flow in the leading-edge region of both two-dimensional 
[l-5] and more complex three-dimensional geometries [4-71. Solutions of the 
governing equations have been obtained by numerical methods. 

At first, numerical investigations of the hypersonic leading-edge equations were 
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FIG. 1. Corner geometry: leading-edge region. 

primarily concerned with the validity of the flow model and therefore, the ability 
to accurately describe the formation of constant-pressure boundary layers, outer 
shock structure, and measurable surface properties. Comparisons with all available 
experimental data have been very good, except in the shock structure for strong 
shock waves where the Navier-Stokes model is inadequate. Initial solutions were 
obtained with a simple explicit finite-difference scheme [l]. In order to progress 
further downstream of the leading edge, less time-consuming implicit methods were 
subsequently applied for two-dimensional geometries [2-41. Detailed comparisons 
of various explicit and implicit finite-difference methods as applied to two- 
dimensional and axisymmetric leading-edge flows are given by Rubin and Lin [5]. 

For three-dimensional flows, the system of linearized algebraic finite-difference 
equations becomes undesirable, from the point of view of numerical analysis, with 
totally implicit methods. With k dependent variables and m, n grid points in the y, 
z directions, respectively, (see Fig. 2) kmn equations are generated. Typically, for 
leading-edge or time-dependent analyses, k = 4 and m, n > 30. Even with 
significantly larger marching steps than allowable with an explicit formulation, the 
inversion matrices become so large that calculation times may not be significantly 
decreased, a high degree of accuracy is not achievable, and computer storage 
becomes excessive. 
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FIG. 2. Three-dimensional finite-difference grid. 

The purpose of this paper is to describe a predictor-corrector, multiple iteration 
technique that has been developed for three-dimensional viscous flows, and in 
particular, for application near leading edges. Our objective is to minimize calcu- 
lation times and yet retain a high degree of accuracy at each downstream location, 
or for unsteady flows in the transient motion. The method is applicable to three- 
dimensional boundary layers, three-dimensional boundary regions where diffusion 
is significant in two directions, and for two-dimensional unsteady solutions of the 
Navier-Stokes equations. 

The finite-difference formulation represents a compromise between modified 
implicit approaches such as the alternating-direction scheme of Peaceman and 
Rachford [8] or the three-dimensional boundary layer method of Krause [9], and 
a modified explicit approach discussed by Evans et al. [lo] and applied in time- 
dependent studies by Crocco [ll] and Cheng [12]. 

The finite-difference formulation is presented in Section III where the use of 
iteration to treat the nonlinearities of the difference equations is discussed. 
Sections IV and V are concerned with the effect of iteration on the stability and 
consistency of the finite-difference scheme, respectively. The need for multiple 
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iteration in order to provide acceptable accuracy at each streamwise location, or 
in the transient, when larger step sizes are chosen, is described by a numerical 
experiment with the two-dimensional Burgers’ equation. 

In Section VI, the finite-difference method is applied to the three-dimensional 
leading-edge equations for the flow along a right-angle corner. Comparisons are 
made with explicit finite-difference solutions [6] obtained with step sizes two 
orders-of-magnitude smaller than those assumed here, and requiring computer 
times that are larger by more than one order-of-magnitude. Comparisons are also 
made with some leading-edge experimental data for the corner geometry. 

A I+l.J.K 
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II. SYMBOLS 

matrix 

column vectors 

Chapman-Rubesin constant 

finite-difference grid points in x, y, z directions, 
respectively 

Mach number 

iteration number 

indices in stability analysis 

pressure 

unit Reynolds number 

(Wx 

time 

temperature 

velocity components in x, y, z, direction, respectively 

free-stream velocity 

Rarefaction parameter V = h4, &/qRe, 

consistency factor (II, = 1 - [/3/(1 + /3)Jn+l 
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hi% 

E 

Y 
E 

Kl 

A 

fil = Re-l dx/dy*, & = Re-l dx/dz2 

amplification factor 

constant 

either 0 or 1 

cAx/2Ay, K2 = dAx/2Az 

1.26v/T112 

kinematic viscosity 

density 

interaction parameter 

III. FINITE-DIFFERENCE METHOD: NONLINEARITY AND ITERATION 

In Section VI numerical solutions for the three-dimensional flow near the 
leading edge of a right-angle corner are obtained with a predictor-corrector 
finite-difference formulation. In order to describe this multistep method and, in 
particular, the effect of iteration on nonlinearity, stability and consistency, 
numerical solutions of the leading-edge equations will be critically examined. 
Also, the following simplified model, representative of the system (13), will be 
analyzed: 

u, + cu, + du, = Re-l(U,, + CU,,). (1) 

For leading-edge or boundary-region analyses E = 1; for three-dimensional 
boundary-layer studies E = 0. For steady flow c = v/u, d = w/u, Re = u/v; for 
unsteady two-dimensional Navier-Stokes considerations, E = 1, (x, y, z) -+ (t, y, x), 
c = v, d = u and Re = v-l. U, v, w are the velocity components in the x, y, z 
directions, respectively. v is the kinematic viscosity. 

If y is chosen as the direction in which the gradients are a maximum, e.g., normal 
to the surface or boundary layer or shear layer, then z (in steady flow) or x 
(in unsteady flow) is termed the lateral direction. When E = 0, lateral diffusion is 
considered unimportant. For many flow cotigurations, this approximation may be 
a generally but not a locally valid approximation. Among these are the corner 
geometry discussed in Section VI and three-dimensional problems with cross-flow 
separation or with large local cross-flow gradients induced by geometry or boundary 

581/9/2-X2 
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conditions, e.g., large local transverse curvature or discontinuous lateral boundary 
values. 

Our objectives in selecting a suitable finite-difference formulation are (1) to 
minimize computer running times by the elimination of viscous stability conditions 
as well as any stability limitation dependent on the normal (JJ) grid size; (2) to 
eliminate cross coupling of grid points, in the normal and lateral directions, in the 
finite-difference equations. In this way, the inversion matrices are reduced, computer 
times are decreased and computational accuracy is increased; (3) to allow for simple 
application to problems where symmetry or derivative boundary conditions play 
an essential role; (4) to maintain a minimum level of storage and still retain desired 
accuracy; (5) to make the computer code as simple as possible; and (6) to use 
iteration as a means of insuring acceptable accuracy of the nonlinear difference 
equations. 

To accomplish these aims, a finite-difference scheme implicit in the normal or 
y-direction, with efficient use of iteration to minimize lateral grid size instability 
and insure second-order accuracy and consistency, is formulated. From a practical 
point of view, it was found by numerical experiment, that this method is superior 
to the implicit alternating-direction scheme of Peaceman and Rachford [S], when 
applied to the leading-edge equations [I 1. This alternating-direction method 
cannot be applied to three-dimensional boundary layers, since diffusion appears in 
only one direction. 

Nonlinear leading-edge calculations using the alternating-direction scheme, 
and without iteration, have been examined by the authors. These calculations are 
not unconditionally stable as the linear theory predicts. Relatively small streamwise 
increments are required in order to obtain stable solutions. These instabilities also 
appear in implicit two-dimensional calculations but are suppressed with iteration 
so that somewhat larger step sizes can be prescribed. The effect of iteration on 
two-dimensional, nonlinear instability is discussed in greater detail later in this 
section. The alternating-direction method is also less attractive than the predictor- 
corrector formulation for several other reasons. In view of the asymmetric treatment 
of derivatives, it is difficult to enforce symmetry conditions as required along a 
diagonal for the corner geometry; similar difficulties with lateral boundary con- 
ditions occur with other nonrectangular geometries, such as a cone at incidence. 
Furthermore, unilateral iteration in any one direction results in instability; the 
lateral grid spacings must remain equal throughout the calculation1 and this 
numerical method appears to be extremely sensitive to the choice of initial con- 
ditions (see Nardo and Cresci [7]). 

Consider a finite-difference grid as given in Fig. 2; the finite-difference formulas 

1 For the corner geometry a variable lateral grid is prescribed to reduce the computer storage 
and calculation time. 
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can be centered at I + 1 (as with a “fully-implicit” method) or at I + 3 
(Crank-Nicolson). 

For the (I + 3) multistep formulation, the following finite-difference represent- 
ations accurate to O(Ax2, dy2, 4z2) are postulated: 

UY = (u4~y)bQ+l,J+l,K - UI+l,J--1.K + UI.J+l.K - %,J--1,X], 

uy~ = (1/2dY2)[uI+,,J+l,K + UI+l,J-l.K - b+l,J.K + UI.J+l,K 

+ UI,J--1.K - 2uI,J>K1, 

d%,J.K = :b;n+l,J,K + UI,J,KI, 

us = (1/&bJ+l.J.K - UI,J,KI, 

u;+“z” = (l/24 Z “)[ UI”,I,J, K+I + $.I. J. ~-1 - ~U?+::J, K 

+ uI.J.K+l + UI.J,K--1 - b.J.Kl, 

UTf’l = (l/44 )[ z 4.LJ.K+I - G~,J.K--1 + %.J,K+l - %.J,K--11, 

(U~)I,J,K = $[Um+lP + UmU”+l]~,~,~. 

(24 

@b) 
(24 

(24 

Similar equations are obtained when the differences are centered at I + 1; but if 
second-order accuracy is to be maintained, (2d) will include a uI-~,J,K term. The 
subscript m denotes the iteration number. 

The finite-difference equations (2) are affected by iteration in two distinct ways; 
(i) linearization of nonlinear terms, viz. (2g), and (ii) the manner in which lateral 
derivatives are formulated, viz. (2e). For the first step of the iterative cycle, terms 
with superscript zero, e.g., uy+l,J,K , are approximated by 

(1) linear replacement : ~+I.J.K = U1.J.K + O(W, (34 

(2) Taylor series to o@x2): U~+~,J,K= hI,J,K - UI-~,J,K $ O(dx2). (3b) 

In this section only the effects of iteration on linearization are discussed. 
Two-dimensional implicit calculations are considered with formulas (2a) and (2b). 
The effect of iteration with the modified lateral difference formulas (2e) and (2f) is 
discussed in Section V. 

With the linearization formulas (3a) or (3b) and the finite-difference relation- 
ships (2), or those centered at I + 1, two planes I and I + 1 remain in storage at 
all times. The I - 1 value in (3b) is immediately replaced with the newly calculated 
I + 1 result. With (3b), the finite-difference equations remain second-order accurate 
expressions of the differential equations. There is, however, a second-order error 
introduced in the relationship between the linearized and exact nonlinear finite- 
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difference equations. For this reason, derivatives evaluated from the solutions 
obtained at station I + 1 may incur a somewhat larger error; e.g., if the error 
created by the linearization in u is 0(dx2), uy may be in error by 0(dx2/dy). If Ax 
and dy are poorly chosen, the error due to linearization may be singificant. 

The system of equations governing the flow near a leading-edge in two or three 
dimensions is nonlinear and includes products of derivatives [l, 4, 51. This means 
that certain derivative functions must also be linearized. Since the errors in these 
derivative expansions may be substantial, the accuracy and possibly the stability 
of the linearized difference equations can be affected if the step size dx is too large 
for a prescribed dy. These difficulties can be circumvented with multistep iterative 
techniques. In this way, the nonlinear finite-difference equations are more closely 
approximated and the accuracy of the calculations is improved. 

For the leading-edge solutions discussed herein, iteration is essential if stable 
solutions are to be obtained with larger values of Ax; moreover, iteration is most 
likely needed with smaller Ax values if highly accurate solutions are desired. 
With unsteady Navier-Stokes calculations, iteration would be required to accu- 
rately describe the transient states. 

Typical results of the iteration procedure are given in Table I, where an implicit 
Crank-Nicolson scheme was prescribed for the axisymmetric flow over a cone at 
zero incidence. Similar results have been obtained with an I + 1 centered implicit 
method and with other two-dimensional geometries [5]. The calculations are 
initiated at the leading edge and progress downstream in x to V = 0.08. V is the 
rarefaction parameter defined in terms of the Mach number M, and Reynolds 
number Re, = U,x/v; r = dcM,/d(Re,). C, is the heat transfer coefficient 
defined by C, = [kT, + pvuu,],,,/p,U,~,(T,~ - TJ. k is the thermal conduc- 
tivity, c, is the specific heat at constant pressure, T the temperature, and p the 
density. 

For the larger streamwise increments, dx > 0.005, with a Taylor series 
linearization to 0(dx2), the calculations become unstable for v < 0.4. With a 
single iteration, the instability is eliminated and the solutions are reasonably 
accurate. Further iteration provides increased accuracy for the flow properties 
and derivatives. Surface properties, shock conditions and even the small normal 
velocity near the surface exhibit the same tendency toward stability and accuracy. 
For the smallest value of Ax depicted, Ax = 0.005, the linearized calculation is 
stable but inaccurate. Singificant improvement is observed with a single iteration. 
The number of iterations required to achieve stability or high levels of accuracy is 
increased with linear replacement (3a) for the initial linearization. In Section V 
the effect of iteration as it relates to consistency of the predictor-corrector finite- 
difference equations is described with a simple model Burgers’ equation, and in 
Section VI, the need for iteration in three-dimensional leading-edge calculations is 
discussed. 
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The final portion of this section is concerned with the procedure for solving the 
linearized difference equations. In view of the coupling associated with this semi- 
implicit formulation, a large number of algebraic equations must be solved 
simultaneously. This inversion process can become extremely time consuming as 
large numbers of grid points must be considered to achieve desired accuracy. 

With the formulas (2), the linearized implicit difference equations of Section VI 
are of the general quasi-two-dimensional form 

where 

&(J) AI+l,J+l,K + B2(J) ‘h+l.J,K + B2tJ) AI+l,J-I,K = cltJ), (4) 

B,(J) is a square matrix and C,(J) is a column vector, the components of which are 
functions of conditions at stations Iand I - 1, or I + 1 when evaluated with known 
conditions from the previous iteration. The system (4) is solved with a technique 
discussed by Richtmyer [ 1 312 and first introduced by Flugge-Lotz and Blottner [ 141 
for boundary layer calculations. This method has proven most successful for two- 
and three-dimensional leading-edge numerical studies, with the latter treated by 
quasi-two-dimensional iterative methods [5]. The object of this algorithm is to 
reduce the three-point difference Eqs. (4) to two-point Eqs. (5) with appropriate use 
of the boundary conditions. 

A I+l.J,K = B,(J) &+LJ+LK + c260 (5) 

With the boundary conditions at the surface, it is possible to substitute (5) into (4) 
and determine the components of B,(J) and C,(J). Then, starting with the outer 
boundary condition, at a given streamwise station I + 1, from (5), it is possible 
to progress inward the surface and evaluate AI+I,J,K. If the process is reversed so 
that the outer boundary conditions specify B,(J) and C,(J), the calculation moves 
outward from the surface, but the final results are unchanged. 

The advantage of this method of integration is the speed of calculation when 
large numbers of grid points are specified. With fifty (50) mesh points and four 
variables, or 200 matrix points, this method, when applied to leading-edge 
equations, is five times faster than the IBM GELB matrix-inversion subroutine. 
As the number of mesh points increases, the time differential widens. 

2 The authors would like to thank the reviewer who noted that this algorithm is also contained 
in the book “The Theory of Difference Games” by Godunov and Ryabenki. 
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IV. ITERATION AND STABILITY 

The discussion of this Section will only be concerned with interior point stability. 
The procedures for handling boundary conditions can, in certain instances, alter 
the results obtained herein. 

For the differential Eq. (1) with c, d, Re assumed constant, inserting the finite- 
difference formulas (2), centered at I + 1, leads to the following linear algebraic 
equation: 

U;n=ltJ.K = UI,J,K - K1(Ulm+:fJ+l,K - U~+;::J-LK > 

where 

~~ = ch/2dy, ~~ = ddx/2dz, /& = Re-l dx/dy2 > 0, f12 = Re-1 dx/dzs > 0, 

and m is the iteration number. Variables with subscript zero may be replaced with 
(3a) or (3b). In view of the linear nature of the differential equations, the following 
results must be used cautiously for nonlinear calculations [ 141. 

If %.J.K = [‘exp(inJLly + ilKAz), then a necessary and sufficient condition for 
the stability of the finite-difference Eq. (6) (see Ref. [13]) requires that the amplifi- 
cation factor .$ be such that 

I t2 I = 4Y < y < 1. (7) 

When m = 0 (no iteration) and with linear replacement (3a) the amplification 
factor takes the form 

5 = (1 + 2p2 cos lAz - 2ifc2 sin ZAz)/(l + 2/$(1 - cos nOy) + 2f12 + 2i~~ sin ndy), 

whereby the inequality (7) becomes 

(8,” - Ks2) Sin2 hdZ + &(I - COS k.lZ) + /?l”(l - COS ndy)2 

+ /&(I - cos dy) f &8&(1 - cos dy) + Kz2 Sin2 ndy > 0. 

(84 

When pZ2 2 Kz2, or Re, = I d I dz Re = 1 w j AZ/V < 2, the condition (8a) is 
automatically satisfied for all Ax. The cross-flow Reynolds number is small and 
viscous effects dominate. 



350 RUBIN AND LIN 

If ,&” < Kz2 or Re, > 2, (8a) is satisfied only with 

AX < (dz2/2v)[(Re,/2)2 - 11-l. @b) 

When Re, -+ co, lateral diffusion is neglected and the system becomes unstable. 
The stability condition (8b) is independent of dy since the equations are implicit 
in the y-direction. Therefore, in order to assess the effect of iteration, we will 
neglect the y or implicit dependence and consider Eq. (1) with a/@ = 0. 

Without iteration, the stability condition for the two-dimensional modified 
explicit equations with K 1 = fil = 0 is identically (8b). With one iteration the 
finite-difference equations become 

1 st step: 

2nd step: 

- %+1x = UI,K - Kz&+I,K+I - %+1&l) + B2@l+l*K+l + Er+l,K-1 - 2%+l.K)- 

Therefore, 

C$ = (1 $- 2p))-2[1 + 28 f 28 cos 8 - 2iK Sin 8 + (28 cos 6 - 2iK sin @2], 

where /I = pa, K = K2, 8 = IAz. The stability condition becomes 

54 = (1 + 33)-4t1 + 4pu + COS 6) + 4p2(3 COS2 8 + 2 COS e -t 1) - 4K2 Sin2 e 

+ 16fi3 COST 0( 1 + cos 0) - 16/-3~~ sin2 0( 1 - cos 0) 

+ 16(p2 ~0~2 8 + K2 sin2 e)2] < 1. (94 

As was the case without iteration, when /3” 3 ~~ or Re, < 2, the system is stable. 
For Re, > 2, (8b) is replaced with an improved condition independent of Re, , 

Ax < AZ/\ d I. t9b) 

(See Ref. [13], p. 291.) It is shown in [5] that any additional iteration will have only 
a minimal effect on altering the stability condition (9b). When Taylor series to 
O(Ax2) is used to linearize the equation, the system is stable without iteration but 
condition (9b) is reduced by a factor one-half (see [5, 111). 

In view of the modified stability results (8b) or (9b), it can be inferred that for 
three-dimensional predictor-corrector calculations, with the surface normal or 
y-direction treated implicitly, condition (9b) is the appropriate stability criterion 
with one or more iterations. 
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V. ITERATION AND CONSISTENCY 

Consistency of the difference equations with the specified differential equations, 
as Llx, Lly, LIZ-, 0, is necessary if meaningful numerical solutions are to be 
obtained. With certain finite-difference formulations, if the limiting value of 
(d~)~/(dz)~, as dx, dz -+ 0 is prescribed improperly, stable and converged results 
can be obtained, but may be consistent with the analytic solution of a different 
differential equation than that being considered. A well-known example of this 
inconsistency occurs with the DuFort-Frankel method when dx/dz is held constant 
[131* 

In the following discussion we will be concerned with the consistency of the 
modified explicit scheme [lo] and therefore, with the semi-implicit predictor- 
corrector formulation presented in this paper. As in Section IV only linear differ- 
ential equations are discussed and it should be emphasized that the results obtained 
herein cannot always be carried over to nonlinear situations. 

Consider the differential Eq. (1) with a/@ = 0, E = 1; U, + du, = Re-l u,, ; 
Re-l and d are assumed here to be constants. With a modified multistep formu- 
lation, Eqs. (2), the difference equations centered at (I + 4) are: 

0 iteration-linear replacement, (3a): 

&+l.K = %.K - K(UI,K+l - &,K-1) + ,%b,K+l + UI.K-1 - %,K - %il,Kk (104 

0 iteration-Taylor series O(dx2), (3b): 

EI+~.K = UI,K - &43%,~+1 - UI-l.K+l - 3uI,,-, + kl.K-1) 

+ @(3%,K+l - &-l.K+l + 3%.,-l - k--1,~-1 - 2uI+l,K - 2uI,K); (lob) 

1 iteration: 

zzI+l.Y = &.K - h&+l.K+l - ~I+l.K-1 + UI,K+l - U!,K-l 1 

+ @@,+l.K+l + &WC-l + %.K+l + %.K-1 - 2uI.K - %+l.K); (1OcJ 

2 iterations: 

h+l.K = @,K - !~~Z,+I,K+I - %+l,K-1 + uI,K+l - uI,K-l) 

+ @(cI+l,K+l + 221+l.K-l + &.K+l + %,K-1 - 2UI,K - 2&+l.K). (104 

Rewriting the difference equations, as in a one-step method, and replacing the 
difference quotients by their differential expressions, evaluated at the point 
(I + 4, K), for dx + 0, LIZ -+ 0, /I fixed, we obtain 
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(a) linear replacement: 

0 iteration: 

u, = (-du, + Re-l u,,) a,, - 0&k/2) u,, + O(dx2, 4.9); 

1 iteration: 

u, = (-A, + Re-l u,,) a1 - &lx/2) u,, 

+ [@dx/2(1 + /q”] u,, + O(dx2,422), &hex WI); (1 lb) 

2 iterations: 

u, = (--da, + Re-l u,,) 01~ - 4-+) Km + [d2M2(1 + /VI %z 
+ O(Llx2, 422). (114 

(b) TayZor series O@lx2): 

0 iteration: 

u, = (-A, + Re-1 u,,) - @xu,, + O(Ax2, 4z2), (Crocco [l I]); (12a) 

1 iteration : 

u, = (-A, + Re-l u,,) - [~lx/2(1 + 2/3)][~~~ - d2~,,] 
+ O(Ax2,4z2), Wb) 

where fl = Re-l dx/dz2, K = ddx/2dz and 01, = 1 - p/(1 + #?)]fl+l. When the 
difference equations are centered at I + 1, similar results are obtained but with 
% = 1 - [Zb/(l + 2/I)]“*’ (see Ref. [S]). 

TABLE II 

Effect of Iteration on Consistency with Linear Replacement 

0 1 1 1 1 1 

0.25 0.800 0.960 0.992 0.998 0.999 

0.50 0.667 0.889 0.963 0.988 0.996 

1 0.500 0.750 0.875 0.938 0.969 

2 0.333 0.556 0,705 0.802 0.868 



THREE-DIMENSIONAL VISCOUS FLOW 353 

Terms of order Ax have been retained in (11) and (12) so that we can assess the 
effect of iteration when Ax is small but nonzero. From (11) and (12) we can conclude 
that consistency is achieved as Ax + Ofor alljinite fi with Taylor-series replacement, 
but only for /3 + 0 with a simple linear replacement. 

From a practical point of view, consistency in (a) can be achieved for all finite /3 
with sufficient iteration, since for /3 > 0, lim,,, 01, + 1. Table II lists 01, for 
selected /3 values. 

It is also significant that iteration reduces the magnitude of the error terms as 
given in (11) and (12). 

For actual calculations where Ax is small but finite, one would expect that with 
Taylor-series replacement, consistency to any order of iteration can be achieved 
with somewhat larger values of /3, as the error in (12) is smaller by Ax than that of 
(11) (see Fig. 3). Even larger p values are permissible with a reduced number of 
iterations when the I - 2 plane is added to the expansion and the error terms in (12) 
are order ,5Ax2. However, storage requirements are increased. 

PO .60 120 1.60 
/---I 

2.00 290 2.60 3.20 360 
X 

AX=OOl. Az=O.2, p=AX/Az'=O 25 
0 MODIFIED EXPLICIT SCHEME II ITERATION WITH LINEAR REPLACEMENT) 
I-J FULLY IMPLICIT METHOD 
d MODIFIED EXPLICIT SCHEME 12 ITERATIONS WITH TAYLOR 

SERIES EXPANSION OIAX*)l 

FIG. 3. (a) Modified explicit solutions-effect of iteration; 
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CRANK- NICOLSON AX=O.Ol, AZ =0 04 

6C 0 
MODIFIED EXPLICIT t 2 ITERATIONS WITH TAYLOR 
SERIES EXPANSION 0 (AX*)1 
AX=OOO5. Az=005,~=AX/Az2=20 
CHENG’S SCHEME (REF 261. p =2 0 

- MODIFIEO EXPLICIT (2 ITERATIONS. LINEAR i 

REPLACEMENT). p =2 0 

n MODIFIED EXPLICIT (3 ITERATIONS WITH TAYLOR ~ 
4 SERIES EXPANSION 0 (AX3 1) 

AX:OOl, Az=OO4.p=625 

-4’ / I - 1 I 1 
0 0.4 0.8 I2 I6 2.0 2.4 2 8 3 2 3.6 

X 

Fig. 3. (b) modified explicit solutions-effect of iteration. 

With /I < 6 and a Taylor-series linearization of 0(dx2), it is found that three 
iterations are required for the three-dimensional leading-edge predictor-corrector 
calculations; whereas, except for extreme cases, only one is necessary for the 
two-dimensional implicit solutions (see Table I). For even larger values of /3, but 
within the limitations of the stability condition (9b), additional iteration is needed 
if consistent finite-difference solutions are to be obtained: With implicit methods, 
successive approximation is necessitated solely by linearization. With approximate 
derivative representations, such as (2e), consistency of the difference equations 
with the differential equations, for larger dx values, is dependent on sufficient 
additional iteration. 

The need for increased iteration with the modified explicit formulas (2e) is 
shown by consideration of Eq. (1) with ajay = 0, Re = 1, E = 1 and d = u 
(Burgers’ equation). As shown by Cheng [12], the exact solution of this equation is 

24 = [cos(z - 2x) + sin(z - 2x)]/[e” + * cos(z - 2x)]. 
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Calculations have been made with an I + 1 centered implicit model (fully 
implicit), Crank-Nicolson model, two-step (one iteration) modified explicit 
formulation with linear replacement, three-step (two iterations) modified explicit 
model with linear replacement, a three-step modified explicit model with a Taylor- 
series expansion of @x2) for the initial linearized values (this is superior to a 
three-iteration approach with linear replacement), and Taylor-series linearization 
of O(Ax3). Results are shown on Fig. 3. It is clear that at least two and most likely 
three iterations are required if the modified solution is to compare favorably with 
an exact implicit formulation without iteration. With sufficient iteration, the 
agreement is excellent and the consistency of the modified approach is confirmed. 
It is significant that for all the calculations depicted (p < 6.25), the stability 
condition (9b) is satisfied, yet more than one iteration is required if consistent 
solutions are to be obtained. With only one iteration and /Zl = 2, the numerical 
solution differs significantly from the exact result. If one is to accurately represent 
transient motion (x -+ t) with this modified formulation, multiple iteration is a 
necessity; in addition, the use of a Taylor series expansion of O(dx2) in the first 
step, for the linearized terms, reduces the number of required iterations, and, 
therefore, leads to reduced computational times without increasing storage 
requirements. These results support the consistency analysis presented in the 
beginning of this Section. 

For the three-dimensional multistep calculations presented in Section VI, only 
the lateral derivatives are specified with the modified explicit expressions, with the 
surface normal direction treated implicitly, [see Eqs. (2)]. The relevant value of /3 
is vdx/udz2. For the calculations presented in Section VI, /I < 2 with linear 
replacement and p < 6 with Taylor series replacement of O(Ax2). For the explicit 
three-dimensional calculations /3 < 0.05. The consistency of the semi-implicit 
method shown is demonstrated on Figs. 5 and 6. 

VI. RIGHT-ANGLE CORNER 

The predictor-corrector method presented herein has been used to examine the 
hypersonic viscous flow along a right-angle corner. This geometry has been 
examined previously by explicit methods [6], but only in the region V > 0.25. With 
the semi-implicit iterative method, computer times have been substantially reduced 
and the calculations for the same stream conditions have been extended to 
V = 0.17, where imbedded shock formation is predicted. In addition, solutions are 
obtained for two other flow conditions for which there is recent experimental 
data [15, 161. 

The three-dimensional single-layer equations that are used to calculate leading- 
edge flow fields have been derived in Ref. [4] and are discussed further in Refs. [5,6]. 
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The governing system of equations is as follows: 

(P4 + (PD>Y + (P4z = 0, 

PUUZ! + PVUY + pwuz = -PI/ + (4/3)(w/), + WY), 

+ wyh + (~4~ - (2i3)ba + wz),i, 
PUW, + P~WY + PWWZ = - Pz + (4/3)(w), + (wz), 

+ (~4~ + (PW,), - (2/3)bd + hb)~ (13) 

PUT, + PUT, + pwTz = - (Y - l)p(uo + v, + wz) + (+)[(/~Tv)u 

+ bTz)zI + Y(Y - 11 ~m2/4~yz + us21 
+ (4/3) Ay - 1m2 + wa2 - %/w,I 
+ l-4 - l)h/ i d2, 

p = PT. 

The Sutherland viscosity law with a suitable correction for T < 180”R is used 
throughout. All quantities are nondimensional: v = F/F&, ; x = X/8; y = y/68; 
B = ymM,3c,/u, ; 6 = (y’l”M,)-1; ym = 1.4; u = 0.75; all other properties are 
nondimensionalized with their free-stream values. Bars denote dimensional 
properties. 

Slip boundary conditions are enforced at the surface, to allow for low-density 
effects. Symmetry conditions are prescribed across the diagonal. Along the surface, 
y = 0, z > 0: 

v = 0; T = Tua + k/b + l)l(h/d T, 2 2.4 = Au, , 
(14) 

w = h[w, + 3(81i-T)+~ T,]; h = 1.26~/F/~. 

As discussed in great detail in Refs. [l-4], for the leading-edge equations, the 
downstream influence of rather arbitrary initial conditions decays rapidly and 
becomes insignificant when the rarefaction parameter V = n/Mm2 = GO.4. In 
view of the fact that precise initial values can only be prescribed with a kinetic 
theory approach to the leading-edge flow, the present theory should then only be 
applicable to the range V < 0.5. 

Initial conditions are prescribed to satisfy the boundary conditions (14); in 
addition, the heat-transfer coefficient and wall density at the leading-edge surface 
mesh point are set equal to their respective free molecular values, and the surface 
pressure is anywhere from one to three times its free molecular value. Apart from 
satisfying a mass flux condition, all other initial values are arbitrary. These 
conditions were chosen as they closely approximate most of the available leading- 
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edge surface data. Agreement with this data is then good for V > 0.5, even though 
the initial values are not exact and the continuum theory is questionable in this 
region, see [l, 3,4]. 

On Fig. 4, a comparison of the computer times for the implicit and explicit 
solutions is depicted. For these calculations, M, = 11.2, T,/T, = 0.30, dy = 0.08, 
dz = 0.08 near the corner, with dz increasing to 0.64 in the asymptotic two- 
dimensional flow. The maximum lateral grid point is K = KM, and defined when 

IA I+l,J,&,, -A I+l.J.KM,,--3 1 < 10-a; A = u, T, w. 

The iteration cycle proceeds from right to left (toward the corner) in the lateral 
direction; symmetry at the 45” line is maintained with u I+I.J+I.K = UI+I.J.K+I and 
WI+l.J+l.K = VI+l.J.K+l - To reach a location V = 0.25 the explicit method requires 
approximately 170 min on a CDC 6600 computer; the implicit solution was obtained 
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in approximately thirteen (13) min. Four iterations were prescribed initially for each 
point. Three appear to be adequate as you progress further downstream, V i 0.30. 

For this corner geometry the calculation times, even with implicit methods, 
become excessive for solutions very far downstream. As the extent of the three- 
dimensional interference region increases, the number of required mesh points 
grows very rapidly, even with symmetry conditions applied along the centerline. 
For a cone at incidence, with the use of a cylindrical-body fixed coordinate system, 
the computer times are considerably less than for the corner geometry. P = 0.1 is 
reached in approximately twenty (20) min.3 

Figures 5 and 6 show a comparison of implicit and explicit solutions along the 
surface, in the stream direction for V > 0.255, and in the lateral direction at 
7 = 0.255. The agreement is excellent. This is true for the shock layer profiles as 
well, and indicates that the handling of the lateral derivatives by this predictor- 
corrector method leads to a finite-difference system that is consistent with the 
explicit method, and therefore, the differential equations. When the number of 

-.- : =0225 

h?,=ll.2 

T,/T,,,=?.83 

0 2 4 6 8 IO 12 14 

z/x 

FIG. 8. Heat-transfer distribution for a comer geometry-& = 11.2. 

5 

S At this location the calculation has progressed 200 steps in the x or marching direction. The 
leading-edge solutions to 7 = 0.1 have been obtained and comparisons with explicit calculations 
and some pressure data are excellent. The calculation is being extended downstream with a 
modified viscous-interaction analysis. 
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iterations is decreased, the predictor-corrector and explicit solutions are no longer 
in good agreement. An inconsistency similar to that occurfing with Burgers’ 
equation arises, see Section V. 

For the implicit calculations, step sizes in the marching or x-direction vary from 
a minimum of 1O-3 near the leading edge to a maximum of 10-2. As the calculation 
progresses downstream, it is possible to increase dx significantly and insure 
acceptable accuracy within the postulated stability requirements. For the explicit 
calculations dx < 10-4. It has been shown by Rubin and Lin [5] that decreasing 
dy, dz has little or no effect on the solutions, except in the shock structure for 
strong shock waves where the validity of the Navier-Stokes model is questionable. 

Figure 7 depicts pressure contours at V = 0.17; the formation of an internal 
imbedded shock wave is predicted. These results can be compared with corner 
solutions at a location further upstream where no internal waves are apparent, 
or experimental values much further downstream where shock patterns are now 

CH 
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Tw ITa’ 

Rem /IN = 800 --: 

.02L~~ .--- L- ---- L. 
0 IO 20 30 4.0 50 60 

X-IN. 

FIG. il. Streamwise heat-transfer history-M, = 19. 
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quite distinct, see Ref. [6]. The surface heat-transfer distribution at several 
streamwise locations is shown on Fig. 8. Very close to the leading edge an overshoot 
in the heat transfer appears near the corner intersection line. Further downstream 
this overshoot is followed by a region where CH falls below its asymptotic two- 
dimensional value. These results confirm similar behavior found in experimental 
data at streamwise locations near [16] and far [6, 171 from the leading edge. 

Comparisons with recent data for the leading edge corner region are shown in 
Figs. 9-l 1. Cresci and Schmidt [15] have obtained impact pressure and recovery 
temperature distributions, Figs. 9, 10, but no surface data. The experimental 
pressure data has not been corrected for local Mach-number or Reynolds-number 
effects so that these comparisons can only be qualitative and not quantitative. 
Nagamatsu [16] presents only streamwise variations in surface heat transfer for 
several distances from the corner intersection line, Fig. 11. The agreement is very 
good and well within the experimental error and accuracy of the theoretical 
analysis. 

VII. SUMMARY AND CONCLUSIONS 

A predictor-corrector semi-implicit finite-difference method has been critically 
examined in order to test its effectiveness in solving three-dimensional viscous-flow 
problems. Specific application has been made to hypersonic leading-edge flows. 
The method is applicable to the unsteady two-dimensional Navier-Stokes equations 
and three-dimensional boundary-layer equations as well. A model equation, 
representative of three-dimensional viscous flow equations, has been analyzed. 

From leading-edge solutions and analysis of the model equation it was found 
that: 

(1) One iteration is generally sufficient to recover acceptable accuracy when 
nonlinear difference equations are linearized with Taylor-series expansions correct 
to O(dx2). 

(2) One iteration is sufficient to significantly improve the stability of the 
system. Since this method is implicit in the surface normal or y-direction, stability 
conditions depend solely on the lateral grid dimension. Further iteration does little 
to modify the stability criteria. 

(3) Several iterations are required to achieve consistency of the difference 
equations with the differential equations. The better the initial linearization the 
fewer the iterations that are needed with a given streamwise increment dx. 
Taylor-series linearization to O(dx2) is significantly better than linear replacement 
of O(dx). As the grid spacing dx increases, but remains well within the stability 
limitation, additional iteration becomes necessary. 
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(4) Semi-implicit solutions for a corner geometry are in excellent agreement 
with explicit results obtained with AX two orders-of-magnitude smaller and with 
calculation times more than an order-of-magnitude greater. 

(5) Comparisons with available experimental data for the corner geometry 
are very good. 

Considerations for the flow over a cone at incidence are nearing completion and 
preliminary work on unsteady Navier-Stokes solutions is in progress. 
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